Projective geometries in exponentially dense matroids. II
نویسنده
چکیده
We show for each positive integer a that, if M is a minor-closed class of matroids not containing all rank-(a+ 1) uniform matroids, then there exists an integer c such that either every rank-r matroid in M can be covered by at most r rank-a sets, or M contains the GF(q)-representable matroids for some prime power q and every rank-r matroid inM can be covered by at most cq rank-a sets. In the latter case, this determines the maximum density of matroids inM up to a constant factor.
منابع مشابه
Projective geometries in dense matroids
We prove that, given integers l, q ≥ 2 and n there exists an integer α such that, if M is a simple matroid with no l + 2point line minor and at least αq elements, then M contains a PG(n− 1, q′)-minor, for some prime-power q′ > q.
متن کاملOdd circuits in dense binary matroids
The exclusion of odd circuits from a binary matroid here is natural. The geometric density Hales-Jewett theorem [3] implies that dense GF(q)representable matroids with sufficiently large rank necessarily contain arbitrarily large affine geometries over GF(q); these geometries contain circuits of every possible even cardinality when q= 2 and circuits of every possible cardinality when q>2. So de...
متن کاملExponentially Dense Matroids
This thesis deals with questions relating to the maximum density of rank-n matroids in a minor-closed class. Consider a minor-closed class M of matroids that does not contain a given rank-2 uniform matroid. The growth rate function is defined by hM(n) = max (|M | : M ∈M simple, r(M) ≤ n) . The Growth Rate Theorem, due to Geelen, Kabell, Kung, and Whittle, shows that the growth rate function is ...
متن کاملAn Introduction to Extremal Matroid Theory with an Emphasis on the Geometric Perspective
1. The Scope of These Talks 1 2. Matroid Theory Background 2 2.1. Basic Concepts 3 2.2. New Matroids from Old 13 2.3. Representations of Matroids over Fields 18 2.4. Projective and Affine Geometries 23 3. A First Taste of Extremal Matroid Theory: Cographic Matroids 25 4. Excluding Subgeometries: The Bose-Burton Theorem 28 5. Excluding the (q + 2)-Point Line as a Minor 43 6. Excluding F7 as a Mi...
متن کاملOn Rota's conjecture and excluded minors containing large projective geometries
We prove that an excluded minor for the class of GF(q)-representable matroids cannot contain a large projective geometry over GF(q) as a minor. © 2005 Elsevier Inc. All rights reserved.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Theory, Ser. B
دوره 113 شماره
صفحات -
تاریخ انتشار 2015